티스토리 뷰

Study

Word Embeddngs 사용 사례 캡쳐

Duke Yang 2017. 9. 5. 13:18


출처 : https://www.analyticsvidhya.com/blog/2017/06/word-embeddings-count-word2veec/


3. Word Embeddings use case scenarios

Since word embeddings or word Vectors are numerical representations of contextual similarities between words, they can be manipulated and made to perform amazing tasks like-

  1. Finding the degree of similarity between two words.
    model.similarity('woman','man')
    0.73723527
  2. Finding odd one out.
    model.doesnt_match('breakfast cereal dinner lunch';.split())
    'cereal'
  3. Amazing things like woman+king-man =queen
    model.most_similar(positive=['woman','king'],negative=['man'],topn=1)
    queen: 0.508
  4. Probability of a text under the model
    model.score(['The fox jumped over the lazy dog'.split()])
    0.21

Below is one interesting visualisation of word2vec.

The above image is a t-SNE representation of word vectors in 2 dimension and you can see that two contexts of apple have been captured. One is a fruit and the other company.



'Study' 카테고리의 다른 글

L1 Regularization, L2 Regularization  (0) 2019.09.27
GCP 우분투에서 csh, tcsh 설치하기  (0) 2019.04.11
Word2Vec 트레이닝 방식 이해  (0) 2017.09.05
공부하기 좋은 자료 #2  (0) 2017.08.31
공부하기 좋은 사이트 #1  (0) 2017.06.16
공지사항
최근에 올라온 글
최근에 달린 댓글
Total
Today
Yesterday
링크
«   2025/01   »
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31
글 보관함